déf. 1

ESPACES VECTORIELS PRÉHILBERTIENS RÉELS

Dans ce chapitre E est un espace vectoriel sur \mathbb{R} , a priori de dimension quelconque. Mais certains paragraphes ne sont valables qu'en dimension finie.

I - PRODUIT SCALAIRE

1) Définition et propriétés du produit scalaire

Soit une application $\langle \cdot \rangle : E \times E \longrightarrow \mathbb{R}, (x,y) \longmapsto \langle x \mid y \rangle$.

• On dit que < | > est une forme bilinéaire sur E lorsque c'est une application bilinéaire de $E \times E$ dans \mathbb{R} . $\forall y \in E, (x \longmapsto \langle x | y \rangle)$ est une application linéaire sur E $\forall x \in E, (y \longmapsto \langle x | y \rangle)$ est une application linéaire sur E

• On dit que < | > est symétrique lorsque $\forall (x,y) \in E, < x | y > = < y | x >$

• On dit que $< \mid >$ est définie positive lorsque $\forall x \in E, < x \mid x > \ge 0$ et $(< x \mid x > = 0 \implies x = 0_E)$

On appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive sur E.

On note $\langle x \mid y \rangle$, (x|y), $\langle x,y \rangle$, (x,y), x.y, $\varphi(x,y)$ entre autres. $\mathbf{d\acute{e}f.}\ 2$ (E, < | >) s'appelle un espace vectoriel <u>préhilbertien réel</u>. Lorsque E est de dimension finie, (E, < | >) s'appelle un espace vectoriel <u>euclidien</u>.

Une application $\langle \cdot \mid \cdot \rangle : E \times E \longrightarrow \mathbb{R}$ est donc un produit scalaire lorsque :

 $\begin{array}{ll} \mathbf{a)} & \forall \, (x,y) \in E^2, \quad < x \mid y> \; = \; < y \mid x>. \\ \mathbf{b)} & \forall \, (x,y,z) \in E^3, \quad \forall \, \lambda \in \mathbb{R}, \quad < x \mid \lambda y + z> \; = \lambda < x \mid y> + < x \mid z>. \end{array}$ La linéarité par rapport à la première variable est alors obtenue grâce à la symétrie.

c) $\forall x \in E$, $\langle x \mid x \rangle \geqslant 0$ et $\langle x \mid x \rangle = 0 \implies x = 0_E$.

Soit (E, < | >) un espace vectoriel préhilbertien réel. On note : $\forall x \in E$: $||x|| = \sqrt{\langle x | x \rangle}$ Soient $(x,y) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

a) $||\lambda x + \mu y||^2 = \lambda^2 ||x||^2 + 2\lambda \mu < x |y| > +\mu^2 ||y||^2$.

b) $||x+y||^2 = ||x||^2 + 2 < x |y| > + ||y||^2$ et $||x-y||^2 = ||x||^2 - 2 < x |y| > + ||y||^2$. **th.** 1

c) Identité du parallélogramme : $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$.

d) Identité de polarisation : $\langle x | y \rangle = \frac{1}{2} (||x+y||^2 - ||x||^2 - ||y||^2) = \frac{1}{4} (||x+y||^2 - ||x-y||^2).$

Théorème de Pythagore : $||x+y||^2 = ||x||^2 + ||y||^2 \iff \langle x | y \rangle = 0$.

Soit (E, < | >) un espace vectoriel préhilbertien réel.

Inégalité de Cauchy - Schwarz : $\forall (x,y) \in E \times E$, $|\langle x | y \rangle| \leq ||x|| ||y||$

Cas d'égalité : $|\langle x | y \rangle| = ||x|| ||y||$ si et seulement si x et y sont colinéaires.

Soit (E, < | >) un espace vectoriel préhilbertien réel.

L'application || || est une norme sur E appelée norme euclidienne associée à | < | >.

Une norme vérifie les trois axiomes suivants :

th. 3 a) $\forall x \in E$, $||x|| \ge 0$ et $||x|| = 0 \iff x = 0_E$.

b) Homogénéité: $\forall x \in E, \forall \lambda \in \mathbb{R}, ||\lambda \cdot x|| = |\lambda| ||x||$.

c) Inégalité triangulaire : $\forall (x,y) \in E^2$, $||x+y|| \leq ||x|| + ||y||$.

De plus ||x+y|| = ||x|| + ||y|| si et seulement si x et y sont colinéaires de même sens.

2) Exemples fondamentaux de produits scalaires

- a) $E = \mathbb{R}^n$ muni du produit scalaire usuel : $\forall (X,Y) \in E^2$, $\langle X | Y \rangle = \sum_{i=1}^n x_i y_i$
- **b)** $E = M_n(\mathbb{R})$ muni du produit scalaire : $\forall (A, B) \in E^2$, $\langle A \mid B \rangle = \text{Tr}(A^T B)$. **Remarque** : C'est aussi le produit scalaire usuel sur $\mathbb{R}^{(n^2)}$

c)
$$E = C([a, b], \mathbb{R}), \quad a < b, \quad \text{et} : \quad \forall (f, g) \in E^2, \quad < f \mid g > = \int_a^b f(x)g(x) \, dx$$

d)
$$E = \mathbb{R}[X], \quad a < b, \quad \text{et} : \quad \forall (P, Q) \in E^2, \quad < P \mid Q > = \int_a^b P(x)Q(x) \, dx$$

e) L'espace vectoriel des fonctions continues de carré intégrable sur I, intervalle de \mathbb{R} , non réduit à un point :

$$E = L_c^2(I, \mathbb{R}) = \{ f \in C^0(I, \mathbb{R}) / |f|^2 \quad \text{est intégrable sur } I \}$$

L'application : $E \times E \longrightarrow \mathbb{R}$, $(f,g) \longmapsto \langle f | g \rangle = \int_I fg$ définit un produit scalaire sur E. La norme associée, notée N_2 , est la norme de la convergence en moyenne quadratique sur I.

3) En dimension finie : Expression d'une forme linéaire

Dans ce paragraphe, (E, < | >) est un espace vectoriel euclidien de <u>dimension finie</u> $n \ge 1$.

Soit f une forme linéaire sur E càd une application linéaire de E dans \mathbb{R} . Alors il existe un unique vecteur a de E tel que : $\forall x \in E$, $f(x) = \langle a \mid x \rangle$

Démonstration:

- a) Pour $x \in E$, on définit $\delta_x : E \longrightarrow \mathbb{R}$, $y \longmapsto \langle x \mid y \rangle$. Par linéarité à droite du produit scalaire, δ_x appartient à $\mathcal{L}(E,\mathbb{R})$.
- b) On considère alors $\delta: E \longrightarrow \mathcal{L}(E,\mathbb{R}), x \longmapsto \delta_x$. Montrons que δ est un isomorphisme d'espaces vectoriels :
 - Prenons $(x, x') \in E^2$ et $\lambda \in \mathbb{R}$. Montrons que $\delta(x + \lambda x') = \delta(x) + \lambda \delta(x')$.

$$\forall y \in E, \quad \delta(x + \lambda x')(y) = \delta_{x + \lambda x'}(y)$$

$$= \langle x + \lambda x' \mid y \rangle$$

$$= \langle x \mid y \rangle + \lambda \langle x' \mid y \rangle \quad \text{par linéarité à gauche du produit scalaire}$$

$$= \delta_x(y) + \lambda \delta_{x'}(y)$$

$$= \delta(x)(y) + \lambda \delta(x')(y)$$

$$= (\delta(x) + \lambda \delta(x'))(y)$$

Ceci prouve donc que $\forall (x, x') \in E^2$, $\forall \lambda \in \mathbb{R}$, $\delta(x + \lambda x') = \delta(x) + \lambda \delta(x')$ et donc que δ est une application linéaire.

• Montrons que $Ker(\delta) = \{0_E\}$. Soit $x \in E$.

$$x \in \text{Ker}(\delta) \iff \delta_x = 0_{\mathcal{L}(E,\mathbb{R})} \iff \forall y \in E, \quad \delta_x(y) = 0 \iff \forall y \in E, \quad \langle x \mid y \rangle = 0$$

En particulier, pour y = x, $\langle x | x \rangle = 0$ donc $||x||^2 = 0$ et ainsi $x = 0_E$. Donc δ est injective.

- De plus, $\dim(\mathcal{L}(E,\mathbb{R})) = \dim(E) \times \dim(\mathbb{R}) = \dim(E)$. Donc δ est un isomorphisme d'espaces vectoriels.
- c) Soit f une forme linéaire sur E. On a donc $f \in \mathcal{L}(E, \mathbb{R})$. Par bijectivité de δ :

$$\exists ! a \in E / f = \delta_a$$
 ie $\exists ! a \in E / \forall x \in E$, $f(x) = \delta_a(x) = \langle a | x \rangle$

Soient $E = \mathbb{R}^n$ muni du produit scalaire usuel et f une forme linéaire sur \mathbb{R}^n . Il existe donc un unique $A = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ tel que

For.
$$\forall X = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, \quad f(x_1, x_2, \dots, x_n) = \langle A \mid X \rangle = \sum_{i=1}^n x_i a_i.$$

$$Si \quad A \neq 0_{\mathbb{R}^n}, \quad l'hyperplan \quad H = \text{Ker } f \quad a \ pour \ equation \quad \langle A \mid X \rangle = 0. \quad A \ est \ alors \ un \ vecteur \ othogonal \ a \ H.$$

II - ORTHOGONALITÉ

1) Familles orthogonales ou orthonormales

Soit (E, < | >) un espace vectoriel préhilbertien réel et || || la norme euclidienne associée à | < | >.

- Deux vecteurs x et y sont orthogonaux lorsque $\langle x | y \rangle = 0$.
- Un vecteur x est normé ou unitaire lorsque ||x|| = 1.
- Une famille $(x_i)_{i \in I}$ de vecteurs de E est orthogonale lorsque $\forall (i,j) \in I^2$, $(i \neq j \implies \langle x_i | x_j >= 0)$. déf.
 - ullet Une famille $(x_i)_{i\in I}$ de vecteurs de E est orthonormale (ou orthonormée) lorsqu'elle est orthogonale et tous ses vecteurs sont normés

donc lorsque
$$\forall (i,j) \in I^2$$
, $\langle x_i | x_j \rangle = \delta_{ij} = \begin{cases} 1 & si \quad i = j \\ 0 & sinon \end{cases}$.

prop.
$$(x_i)_{i \in I}$$
 est une famille orthogonale de vecteurs tous non nuls de E alors la famille $\left(\frac{x_i}{||x_i||}\right)_{i \in I}$ est orthonormale

th. Si
$$x_1, x_2, \dots, x_p$$
 sont p vecteurs de E non nuls et deux à deux orthogonaux alors ils forment une famille libre

2) Bases orthonormales (ou orthonormées)

Dans ce paragraphe, (E, < | >) est un espace vectoriel euclidien de <u>dimension finie</u> $n \ge 1$.

Soit
$$\mathcal{B} = (e_1, e_2, \dots, e_n)$$
 une base orthonormale de E .

Si
$$x = \sum_{i=1}^{n} x_i e_i$$
 et $y = \sum_{i=1}^{n} y_i e_i$ sont deux vecteurs de E

$$\mathbf{Si} \qquad x = \sum_{i=1}^{n} x_{i} e_{i} \quad \text{et} \quad y = \sum_{i=1}^{n} y_{i} e_{i} \quad \text{sont deux vecteurs de } E$$

$$\mathbf{prop.1} \qquad \mathbf{alors} \qquad \text{en notant } X = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}, \quad \text{respectivement} \quad Y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

le vecteur colonne représentant
$$x$$
 (resp. y) dans la base \mathcal{B} , on a

$$< x \mid y > = X^{T}Y = \sum_{i=1}^{n} x_{i}y_{i}$$
 et $||x|| = \sqrt{X^{T}X} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ et $x = \sum_{i=1}^{n} < e_{i} \mid x > .e_{i}$

$$\mathbf{prop.2} \begin{vmatrix} \text{Soit } u \text{ un endomorphisme de } E, & \mathcal{B} = (e_1, e_2, \dots, e_n) & \text{une } \underline{\text{base orthonormale}} \text{ de } E \text{ et } A \text{ la matrice de } u \text{ dans } \mathcal{B}. \\ \text{Alors, en notant} & A = (a_{ij})_{1 \leqslant i,j \leqslant n}, & \text{on a} & \forall (i,j) \in [\![1,n]\!]^2, & a_{ij} = < e_i \mid u(e_j) > \\ \end{vmatrix}$$

th. 1 Si
$$\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$$
 sont n vecteurs de E , unitaires et deux à deux orthogonaux alors ils forment une base de E

$\underline{\text{D\'emonstration}}$:

Par hypothèse, ces n vecteurs sont unitaires donc non nuls, et deux à deux orthogonaux.

D'après II. 1) th., ces n vecteurs forment donc une famille libre de E.

E étant de dimension n, ces n vecteurs forment une base de E.

Méthode d'orthonormalisation de Schmidt :

th. 2 Si
$$(e_1, e_2, \dots, e_n)$$
 est une base de E , il existe une base orthonormale $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ de E telle que : $\forall k \in [\![1, n]\!], \quad Vect(e_1, e_2, \dots, e_k) = Vect(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k)$

Tout espace vectoriel euclidien de dimension $n \ge 1$ admet une base orthonormale directe.

3) Sous espaces vectoriels orthogonaux

Soit (E, < | >) un espace vectoriel préhilbertien réel et || || la norme euclidienne associée à || > >.

On dit que deux sous-espaces vectoriels de E, F et G sont orthogonaux lorsque : $\forall \, x \in F, \quad \forall \, y \in G, \quad < x \mid y >= 0.$ On note $F \perp G$.

• Si F et G sont de dimensions finies et $(f_i)_{i\in [\![1,p]\!]}$ est une base de F et $(g_j)_{j\in [\![1,q]\!]}$ une base de G

alors $F \perp G \iff \forall (i,j) \in [[1,p]] \times [[1,q]], < f_i \mid g_j >= 0$ • Si F_1, F_2, \dots, F_p sont p sous-espaces vectoriels de E deux à deux orthogonaux alors la somme $F_1 \oplus F_2 \oplus \cdots \oplus F_p$ est directe et s'appelle la somme directe orthogonale des F_i

On dit que deux sous-espaces vectoriels de E, F et G sont supplémentaires orthogonaux lorsque $F \oplus G = E$ et $F \perp G$. $\mathbf{d\acute{e}f.}\ 2$ On dispose alors de deux projections orthogonales et de deux symétries orthogonales.

4) Orthogonal d'un sous-espace vectoriel

Soit (E, < | >) un espace vectoriel préhilbertien réel et || || la norme euclidienne associée à || > >.

On appelle orthogonal d'un sous-espace vectoriel F de E l'ensemble $F^{\circ} = F^{\perp} = \{x \in E \ / \ \forall y \in F, \ < y \ | \ x >= 0\}$

• F^{\perp} est un sous-espace vectoriel de E.

• $E^{\perp} = \{0_E\}$ et $\{0_E\}^{\perp} = E$.

prop. 1 \bullet $F \cap F^{\perp} = \{0_E\}$. Donc $F \oplus F^{\perp}$ est une somme directe orthogonale. Mais attention, cette somme ne vaut pas toujours E. • $F \subset F^{\perp \perp}$. Mais il n'y a pas forcément égalité.

$D\'{e}monstration:$

a) Montrons que F^{\perp} est un sous-espace vectoriel de E.

• $0_E \in F^{\perp}$ puisque $\forall y \in F$, $\langle y \mid 0_E \rangle = 0$.

• Montrons que F^{\perp} est stable par combinaison linéaire. Prenons $(x, x') \in (F^{\perp})^2$ et $\lambda \in \mathbb{R}$. On a donc $\forall y \in F$, $\langle x \mid y \rangle = \langle x' \mid y \rangle = 0$. Donc

$$\forall \, y \in F, \quad < \, \lambda x + x' \mid y \, > = \lambda < \, x \mid y \, > + < \, x' \mid y \, > = 0$$

Donc $\lambda x + x' \in F^{\perp}$ et F^{\perp} est stable par combinaison linéaire.

• Conclusion : F^{\perp} est un sous-espace vectoriel de E.

b) • Si un vecteur x est dans E^{\perp} alors il est orthogonal à tout vecteur de E donc en particulier à lui-même. Donc $||x||^2 = \langle x | x \rangle = 0$ et donc $x = 0_E$. Donc $E^{\perp} = \{0_E\}$

• On a: $\forall y \in E$, $\langle y \mid 0_E \rangle = 0$ donc $\forall y \in E$, $y \in \{0_E\}^{\perp}$. Donc $\{0_E\}^{\perp} = E$.

c) Si un vecteur x appartient à $F \cap F^{\perp}$ alors il est dans F et orthogonal à tout vecteur de F donc en particulier à lui-même. Donc $F \cap F^{\perp} = \{0_E\}.$

d) Par définition de $F^{\perp\perp} = (F^{\perp})^{\perp}$: $\forall \, x \in F, \quad \forall \, y \in F^{\perp}, \quad < \, x \mid y \, > = \, 0 \quad \text{donc} \quad \, \forall \, x \in F, \quad \, x \in \left(F^{\perp}\right)^{\perp}. \quad \text{Donc} \quad \, F \subset F^{\perp \perp}$

Si H est de dimension finie et (h_1,h_2,\ldots,h_p) est une base de H alors $H^{\perp}=\{x\in E\ /\ \forall\,i\in \llbracket 1,p\rrbracket,\ < h_i\mid x>=0\}$

5) Projection orthogonale sur un sous-espace vectoriel de dimension finie

Dans ce paragraphe, E est un espace préhilbertien réel de dimension quelconque et F est un sous-espace vectoriel **de dimension finie** de E.

a) Si F est un sous espace de dimension finie de E alors $F \oplus F^{\perp} = E$ et $F = F^{\perp \perp}$. On peut donc définir p_F la projection orthogonale sur F.

th. 1

b) Si
$$(\varepsilon_1, \varepsilon_2, ..., \varepsilon_p)$$
 est une base orthonormale de F alors $\forall x \in E, p_F(x) = \sum_{j=1}^p < \varepsilon_j \mid x > .\varepsilon_j$.

Distance à un sous-espace vectoriel : Soit F un sous-espace vectoriel de dimension finie de E et $x \in E$.

 $\{||x-y|| / y \in F\}$ est une partie de \mathbb{R} , non vide (car $F \neq \emptyset$), et minorée par θ .

Elle admet donc une borne inférieure appelée distance de x à F et notée d(x, F).

$$d(x, F) = \inf\{||x - y|| / y \in F\}$$

Soit F un sous-espace vectoriel de dimension finie de E et $x \in E$. On dispose de p_F la projection orthogonale sur F, puisque $F \oplus F^{\perp} = E$

th. 2

déf.

a)
$$\exists ! \ a \in F \ / \ d(x,F) = ||x-a||$$
 et $a = p_F(x)$. De plus : $d^2(x,F) = ||x-a||^2 = ||x||^2 - ||a||^2$

b) Inégalité de Bessel : $||p_F(x)|| \le ||x||$

Distance d'un vecteur à un hyperplan dans $E = \mathbb{R}^n$ muni du produit scalaire usuel et de la base canonique $\mathcal{B} = (e_1, \dots, e_n)$.

Soit a_1, a_2, \ldots, a_n , n réels non tous nuls et H l'hyperplan de E d'équation dans \mathcal{B} : $a_1x_1 + \cdots + a_nx_n = 0$

th. 3

Soit
$$M = \sum_{i=1}^{n} c_i e_i = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 un vecteur de E . Alors $d(M, H) = \frac{|a_1 c_1 + \dots + a_n c_n|}{\sqrt{a_1^2 + \dots + a_n^2}}$

III - ISOMÉTRIES VECTORIELLES OU AUTOMORPHISMES ORTHOGONAUX

Dans ce paragraphe, (E, < | >) est un espace vectoriel euclidien de <u>dimension finie</u> $n \ge 1$.

1) Définitions et propriétés

th. 1

th. 2

Soit $u \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :

- a) u conserve la norme : $\forall x \in E$, ||u(x)|| = ||x||.
- b) u conserve le produit scalaire : $\forall (x,y) \in E^2$, $\langle u(x) | u(y) \rangle = \langle x | y \rangle$.
- c) L'image d'une base orthonormale par u est une base orthonormale.

Lorsque u vérifie l'une des ces assertions, u est bijective

et on dit que u est une isométrie vectorielle ou un automorphisme orthogonal.

On note $\mathcal{O}(E)$ l'ensemble des isométries vectorielles.

La composée de deux isométries vectorielles est une isométrie vectorielle.

L'application linéaire réciproque d'une isométrie vectorielle est une isométrie vectorielle.

 $\mathbf{th.2}$ Le déterminant d'une isométrie vectorielle vaut 1 ou -1.

L'ensemble $\{u \in O(E) \mid det(u) = 1\}$ est appelé groupe spécial orthogonal ou groupe des rotations, et est noté $\mathcal{SO}(E)$ ou $\mathcal{O}_+(E)$.

Soit u une isométrie vectorielle.

th.3 a) Si λ est une valeur propre réelle de u alors $\lambda \in \{1, -1\}$. Donc $Sp_{\mathbb{R}}(u) \subset \{-1, 1\}$.

b) Les sous espaces vectoriels $\operatorname{Ker}(u-Id_E)$ et $\operatorname{Ker}(u+Id_E)$ sont orthogonaux.

Soient u une isométrie vectorielle et F un sous espace vectoriel de E.

th. 4 a) Si F stable par u alors F^{\perp} est également stable par u.

b) Dans ce cas, les endomorphismes induits par u sur F et F^{\perp} sont des isométries vectorielles.

2) Matrices orthogonales

déf. Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthogonale lorsque A est inversible et $A^{-1} = A^T$ Cela équivaut à $A \times A^T = I_n$ ou encore à $A^T \times A = I_n$ On note $\mathcal{O}_n(\mathbb{R})$ l'ensemble des matrices orthogonales.

Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base orthonormale de E fixée. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $u \in \mathcal{L}(E)$ tel que $A = M_{\mathcal{B}}(\mathbf{u})$.

th. 1 Alors u est une isométrie vectorielle si et seulement si A est une matrice orthogonale. C'est- à-dire : $u \in \mathcal{O}(E) \iff A \in \mathcal{O}_n(\mathbb{R})$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les propriétés suivantes sont équivalentes :

- a) A est orthogonale.
- **b)** A^T est orthogonale.
- c) Les vecteurs colonnes de A forment une base orthonormale de $\mathcal{M}_{n_1}(\mathbb{R})$ pour le produit scalaire usuel.
- d) Les vecteurs lignes de A forment une base orthonormale de $\mathcal{M}_{1n}(\mathbb{R})$ pour le produit scalaire usuel.
- e) A est la matrice de passage entre deux bases orthonomales de \mathbb{R}^n .

Le produit de deux matrices orthogonales est une matrice orthogonale.

L'inverse d'une matrice orthogonale est une matrice orthogonale.

th. 3 Le déterminant d'une matrice orthogonale vaut 1 ou -1.

 $\mathcal{SO}_n(\mathbb{R}) = \{A \in \mathcal{O}_n(\mathbb{R}) \ / \ \det(A) = 1\}$ s'appelle le groupe spécial orthogonal.

3) Symétries orthogonales

Soit F est un sous espace de E. Comme E, donc F, est de dimension finie, on sait que $E = F \oplus F^{\perp}$. La symétrie s par rapport à F parallèlement à F^{\perp} est appelée symétrie orthogonale par rapport à F. La symétrie s' par rapport F^{\perp} parallèlement à F est appelée symétrie orthogonale par rapport à F^{\perp} .

Rappelons que si $x = y + z \in F \oplus F^{\perp}$ alors s(x) = y - z et s'(x) = -y + z = -s(x).

prop. 1 | Si s est une symétrie orthogonale alors $s \in \mathcal{O}(E)$.

Soit s une symétrie orthogonale par rapport à un hyperplan H. s s'appelle la réflexion par rapport à H.

Alors: $s(x) = x - 2 < x \mid \frac{a}{||a||} > \frac{a}{||a||}$ où a est un vecteur non nul normal à H.

Soit s' la symétrie orthogonale par rapport à la droite $D = \mathbb{R}.a$ où $a \in E - \{0_E\}.$ s' s'appelle le <u>retournement</u> d'axe D.

Alors: $s'(x) = -s(x) = -x + 2 < x \mid \frac{a}{||a||} > \frac{a}{||a||}$

IV - RÉDUCTION DES ENDOMORPHISMES SYMÉTRIQUES

Dans ce paragraphe, (E, < | >) est un espace vectoriel euclidien de <u>dimension finie</u> $n \ge 1$.

1) <u>Définition</u>

prop. 2

déf. $u \in \mathcal{L}(E)$ est un endomorphisme symétrique lorsque $\forall (x,y) \in E^2$, $\langle u(x) | y \rangle = \langle x | u(y) \rangle$ On notera $\mathcal{S}(E)$ l'ensemble des endomorphismes symétriques.

Soit \mathcal{B} est une base orthonormale de E et $u \in \mathcal{L}(E)$.

th. 1 Alors $u \in \mathcal{S}(E)$ si et seulement si $M_{\mathcal{B}}(\mathbf{u})$ est symétrique On en déduit que $\mathcal{S}(E)$ est un sous-espace vectoriel de $\mathcal{L}(E)$ isomorphe à $\mathcal{S}_n(\mathbb{R})$. Donc dim $(\mathcal{S}(E)) = \frac{n(n+1)}{2}$

Soit u un endomorphisme symétrique de E.

• Si F est un sous espace vectoriel de E stable par u alors F^{\perp} est également stable par u et les endomorphismes induits par u sur F et F^{\perp} sont symétriques.

• Si λ et μ sont deux valeurs propres <u>distinctes</u> de u alors $E_{\lambda}(u) \perp E_{\mu}(u)$.

Exemples: Les projecteurs orthogonaux et les symétries orthogonales sont des endomorphismes symétriques.

2) Théorème spectral

Soit u un endomorphisme symétrique de l'espace vectoriel euclidien E. Alors

• Toute valeur propre de u est réelle. χ_u est donc scindé dans \mathbb{R} .

 \bullet Les sous espaces propres de u sont deux à deux orthogonaux.

ullet u est diagonalisable et admet une base orthonormée de vecteurs propres. On dit que « u est diagonalisable en base orthonormale ».

 $Traduction\ matricielle:$

th. 1

Soit $A \in \mathcal{S}_n(\mathbb{R})$. A est donc une matrice symétrique réelle.

Alors « A est orthodiagonalisable dans $\mathcal{M}_n(\mathbb{R})$ », c'est-à-dire : Il existe dans $\mathcal{M}_n(\mathbb{R})$,

D une matrice diagonale et P une matrice orthogonale telles que : $A = P D P^{-1} = P D P^T$

3) Exemples fondamentaux

- a) Diagonaliser dans $\mathcal{M}_2(\mathbb{R})$ la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.
- b) La matrice $A = \begin{pmatrix} 2i & 1 \\ 1 & 0 \end{pmatrix}$ est une matrice symétrique de $\mathcal{M}_2(\mathbb{C})$ mais n'est pas diagonalisable.
- c) Si A est une matrice de $\mathcal{M}_n(\mathbb{R})$ alors A^TA et AA^T sont diagonalisables dans $\mathcal{M}_n(\mathbb{R})$.
- d) Soit A une matrice symétrique réelle de $\mathcal{M}_n(\mathbb{R})$. Elle est donc diagonalisable et on note $\lambda_1, \lambda_2, \dots, \lambda_n$ ses valeurs réelles comptées avec leur ordre de multiplicité.

On suppose:
$$\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$$
 et on note $\mathcal{D} = \left\{ \frac{X^T A X}{X^T X} \ / \ X \in M_{n,1}(\mathbb{R}) - \{0\} \right\}.$

Montrer que :
$$\sup \mathcal{D} = \max\{\lambda_i / 1 \leqslant i \leqslant n\} = \lambda_1$$
 et $\inf \mathcal{D} = \min\{\lambda_i / 1 \leqslant i \leqslant n\} = \lambda_n$.

- e) Soit A une matrice symétrique réelle de $\mathcal{M}_n(\mathbb{R})$. Elle est donc diagonalisable et on note $\lambda_1, \lambda_2, \dots, \lambda_n$ ses valeurs réelles comptées avec leur ordre de multiplicité. On dit que A est positive lorsque $\forall i \in [\![1,n]\!], \quad \lambda_i \geqslant 0$.
 - i) Montrer que A est positive si et seulement si $\forall X \in \mathbb{R}^n, X^T A X \ge 0.$
 - ii) On suppose que A est positive. Montrer qu'il existe une matrice R de $\mathcal{M}_n(\mathbb{R})$ telle que $A = R^2$.
 - iii) On suppose que A est positive. Montrer qu'il existe une matrice M de $\mathcal{M}_n(\mathbb{R})$ telle que $A = M^T M$. Exprimer, pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^T A X$ en fonction de M et X.