ψ^* 2017 : TD 21 des 5 et 7 mars

Espaces préhilbertiens, espaces euclidiens

- 1. $E = \mathcal{C}^0([-1,1],\mathbb{R})$ est muni de son produit scalaire usuel, F est le sev des fonctions nulles sur [0,1].
 - a. Lemme : montrer que si f est positive et g est continue sur [a, b], alors :

$$\exists c \in [a,b] \ , \ \int_a^b fg = g(c) \int_a^b f$$

- b. Soient $a \in]-1,1[$ et $f_{a,n}$ la fonction pic centrée en a, nulle hors de $]a \frac{1}{n}, a + \frac{1}{n}[$, et d'intégrale 1. Pour $g \in E$ quelconque, calculer $\lim_{n \infty} (f_{a,n} \mid g)$.
- c. Déterminer F^{\perp} .
- d. Montrer que $F \oplus F^{\perp} \neq E$.
- 2. $E = \mathcal{C}^0\left(\left[0,1\right],\mathbb{R}\right)$ est muni de son produit scalaire usuel : $(f\mid g) = \int_0^1 f(t)g(t)dt$. F est le sev de E engendré par $a:t\mapsto t$ et $b:t\mapsto t^2$. Calculer la projection orthogonale de $g:t\mapsto \ln(1+t)$ sur F.
- 3. On fixe $A \in M_n(\mathbb{R})$.

 Justifier l'existence de $m = \min \left\{ \sum_{(i,j) \in [1..n]^2} (a_{i,j} x_{i,j})^2 \mid X \in S_n(R) \right\}$, et le calculer.
- 4. I est un segment de \mathbb{R} non réduit à un point, a est un réel.
 - a. Montrer que :

$$\forall n \in \mathbb{N}, \exists A_n \in \mathbb{R}_n[X], \forall P \in \mathbb{R}_n[X], P'(a) = \int_I A_n(t)P(t)dt$$

- b. Montrer que ceci est faux si on remplace $\mathbb{R}_n[X]$ par $\mathbb{R}[X]$.
- c. Généraliser avec P''(a) .
- 5. Montrer que pour tout $n \in \mathbb{N}^*$, la matrice de Hilbert $H_n = \left[\frac{1}{i+j-1}\right]_{(i,j)\in[1..n]^2}$ est inversible. Indication : l'interpréter comme une matrice de Gram.
- 6. Soient E un espace euclidien, $B=(e_1,...,e_n)$ une base de $E,\,G$ sa matrice de Gram.
 - a. On prend $x,\ y$ des vecteurs quelconques de E, et $X,\ Y$ leur matrice colonne dans B . Exprimer $(x\mid y)$ à l'aide de $X,\ Y,\ G$.
 - b. En déduire que G est inversible.
 - c. Montrer que toutes les valeurs propres réelles de G sont strictement positives.
 - d. Montrer que toutes les valeurs propres de G sont réelles. Indication : pour X vecteur propre de G, calculer et comparer \overline{X}^TGX et $X^TG\overline{X}$.