*PSI** 2017 - 2018 *TD CHIMIE* N⁵

EXERCICE 1 : Température de flamme

On s'intéresse à un chalumeau oxhydrique qui correspond à la réaction :

$$H_{2(g)} + \frac{1}{2} O_{2(g)} = H_2 O_{(g)}$$
.

Données:

- ♣ Enthalpie standard de formation de H₂O_(I): 285 kJ/mol
- ♣ Enthalpie de vaporisation de l'eau à 373 K : 2,3 10³ kJ/kg
- $+ C_{P}^{\circ}_{H2O(I)} = 4,2 \text{ kJ/kg/K}$
- $L_{P}^{\circ}_{H2O(g)} = 1.8 \text{ kJ/kg/K}$
- $4 M_{H2O} = 18 g/mol$

Déterminer pour l'utilisation monobare de ce chalumeau la température maximale susceptible d'être atteinte par le système gazeux.

Commenter la phrase ci-dessous (article « Oxhydrogène » de l'encyclopédie Wikipédia) : « La température maximale d'environ 2 800 °C est atteinte avec un mélange stœchiométrique pur, elle est environ 700 °C plus chaude que dans une flamme d'hydrogène dans l'air. »

EXERCICE 2 : Energies de liaison et enthalpies standard de réaction

L'acide éthanoïque est préparé par carbonylation du méthanol (réaction en phase gazeuse) :

Données :

♣ Energies de liaison en kJ.mol⁻¹:

Liaison	D_{XY}
H-H	436
C-C	345
C-H	415
O=O	498
C-O	356
O-H	463
C=O	743

- Enthalpie standard de sublimation du carbone : 717 kJ.mol⁻¹
- Enthalpie standard de formation du monoxyde de carbone : 110 kJ.mol-1

Déterminer, à 298 K, les enthalpies standard de formation du méthanol et de l'acide éthanoïque gazeux.

En déduire l'enthalpie standard de réaction de la carbonylation du méthanol.

EXERCICE 3 : Réduction de l'alumine

Le tableau ci-dessous contient les données thermodynamiques relatives à l'exercice.

On admettra que ces valeurs numériques sont constantes dans l'intervalle de température considéré.

La constante des gaz parfaits vaut R = 8.31 J.mol⁻¹.K⁻¹

On rappelle que l'aluminium fond à 600 °C.

On ne tient pas compte de l'aluminium gazeux.

Composé	Al _(s)	Al _(I)	Al ₂ O _{3(s)}	C _(s)	CO _(g)	O _{2(g)}
$\Delta_{\rm f} {\rm H}^{\circ}$ (k J.mol ⁻¹)	0	10.9	-1674	0	-110	0
S° (J.mol ⁻¹ .K ⁻¹)	28	40	51	6	197	205

Questions préliminaires :

- 1. Déterminer l'enthalpie standard de fusion de l'aluminium et commenter son signe.
- 2. Déterminer l'entropie standard de fusion de l'aluminium et commenter son signe.

Action du carbone sur l'oxyde d'aluminium

- 1. Ecrire l'action de l'oxygène sur l'aluminium suivant la température dans l'intervalle [300, 2500]. Les réactions seront écrites pour une ½ mole d'oxygène.
- 2. Déterminer les expressions de l'enthalpie libre standard, $\Delta_r G^{\circ}_1(T)$, de cette réaction suivant la température dans l'intervalle [300, 2500].
- 3. Ecrire l'action du carbone sur le dioxygène et calculer l'enthalpie libre standard correspondante pour $\frac{1}{2}$ mole de O_2 .
- 4. Montrer que la réaction de réduction de l'alumine par le carbone est favorisée pour des températures supérieures à 2000 °C.