PSI* 2017 - 2018

TD CHIMIE N7 - THERMOCHIMIE

Exercice 1 : Equilibre en phase gazeuse d'un composé halogéné (CCP MP extrait)

- Tous les constituants sont gazeux et seront assimilés à des gaz parfaits.
- Constante des gaz parfaits : $R = 8,3145 \text{ J.mol}^{-1} \cdot \text{K}^{-1}$.
- Pression standard de référence : P° = 1 bar.
- Enthalpie standard de formation de NO_{gaz} à 25°C : $90374 \, J.mol^{-1}$.
- Masse molaire du dibrome : $M(Br_2) = 159,81 \text{ g.mol}^{-1}$.
- Température de fusion du dibrome (à la pression P° = 1 bar) : 266 K.
- Température d'ébullition du dibrome (à la pression P° = 1 bar) : 331,5 K.
- Entropie standard du dibrome à 25°C :
 - o dans l'état gaz parfait : $S_{gaz}^{\circ} = 245,35 \text{ J.mol}^{-1}.K^{-1}$,
 - o dans l'état liquide : $S_{liquide}^{\circ} = 152,30 \text{ J.mol}^{-1}.K^{-1}.$
- Enthalpie libre standard de formation des composés dans l'état gaz parfait à 25°C :

Composé	NO	Br ₂	NOBr
$\Delta_{\mathrm{f}}\mathrm{G}^{\circ}(25^{\circ}\mathrm{C}) \ \left(\mathrm{J.mol}^{-1}\right)$	86 570	3 134	82 425

L'approximation d'Ellingham est supposée vérifiée.

On étudie dans cette partie C l'équilibre [1], en phase gazeuse ci-dessous :

$$2 \text{ NO}_{(gaz)} + Br_{2(gaz)} = 2 \text{ NOBr}_{(gaz)}$$
 [1]

C-1. Enthalpie standard de formation du dibrome gazeux

- C-1-1. Expliquer pourquoi l'enthalpie standard de formation à 25°C du dibrome gazeux n'est pas nulle.
- C-1-2. Calculer, à partir de l'entropie standard du dibrome dans les états gaz et liquide et de son enthalpie libre standard de formation, son enthalpie standard de formation dans l'état gazeux à 25°C.

C-2. Équilibre à 25°C (298,15 K)

Calculer, à partir des enthalpies libres standards de formation des composés intervenant dans la réaction [1] :

- C-2-1. L'enthalpie libre standard molaire à 25°C de cette réaction.
- C-2-2. Sa constante d'équilibre à 25°C.

C-3. Équilibre à 333K

On introduit, jusqu'à la pression $P_1=6\,000$ Pa, dans un récipient de volume constant $(V=2,000\,L)$ initialement vide de l'oxyde d'azote (NO) à la température $T_1=300\,K$. On ajoute ensuite dans ce récipient une masse $m_{Br2}=300\,mg$ de dibrome. La température du mélange est portée à $T_2=333\,K$. Une fois l'état d'équilibre établi, la pression totale dans le récipient est $P_2=8\,220\,Pa$.

- C-3-1. Calculer la quantité de matière de chaque composé introduit dans le récipient.
- C-3-2. Calculer la quantité de matière totale à l'équilibre.
- C-3-3. Déduire des questions précédentes l'avancement de la réaction [1].

- C-3-4. Calculer la pression partielle de chaque composé à l'équilibre.
- C-3-5. Calculer la constante d'équilibre et l'enthalpie libre standard de la réaction [1] à la température T_2 .

C-4. Enthalpie de la réaction

- C-4-1. Déduire des questions C-2-2 et C-3-5 l'enthalpie standard de la réaction [1].
- C-4-2. Déduire de l'enthalpie standard de formation de $NO_{(gaz)}$ et des questions C-1-2 et C-4-1 l'enthalpie standard de formation de $NOBr_{(gaz)}$ à 25°C.

Exercice 2 : Décomposition du pentachlorure de phosphore (Mines PSI – extrait)

Le pentachlorure de phosphore se décompose selon la réaction (2) suivante :

$$PC1_5 = PC1_3 + C1_2$$
 (2)

Tous les composés sont ici gazeux et supposés parfaits. On notera K_p la constante de cet équilibre, qui vaut 1,85 à la température de 525 K. On notera P° la pression standard.

- 13-Cas n°1. On met dans une enceinte, initialement vide, à $T = 525 \, K$ maintenue constante, 1 mole de PCl_5 sous la pression totale maintenue constante $P_{tot}=2$ bar. Déterminer l'équation donnant l'avancement ξ de la réaction (2) à l'équilibre sous la forme $K_p = f_1(\xi)$
- 14- Cas n°2. Dans une enceinte initialement vide maintenue à 525 K, on place une mole de PCl_5 . Le volume de l'enceinte est constant et tel qu'avant toute réaction on a : $P_{tot}(0) = 2$ bars. Déterminer l'équation donnant l'avancement de la réaction (2) une fois l'équilibre atteint sous la forme $K_p = f_2(\xi)$. Exprimer la pression finale $P_{tot}(\xi)$ du système en fonction de cet avancement.
- 15-Cas n°3. On met dans une enceinte initialement vide maintenue à 525 K, 1 mole de PCl_5 et 1 mole d'argon, gaz inerte, sous une pression totale maintenue constante valant $P_{tot} = 2$ bar. Déterminer l'équation donnant l'avancement de la réaction (2) à l'équilibre sous la forme $K_p = f_3(\xi)$.
- **16-**Le tableau suivant regroupe les résultats numériques, avancements (ξ) et pressions à l'équilibre (en bar), correspondants aux 3 cas précédents :

Cas	$\mathrm{P}_{\mathrm{\acute{e}q.}}$	یح
1	2,00	0,693
2	3,21	0,605
3	2,00	0,769

En comparant les fonctions $f_2(\xi)$ et $f_3(\xi)$ à $f_1(\xi)$, justifier la valeur plus faible de l'avancement à l'équilibre dans le cas 2 par rapport au cas 1, et sa valeur plus forte dans le cas 3 par rapport au cas 1. Donner une interprétation physique à ces évolutions.