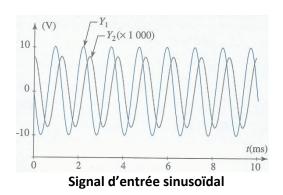
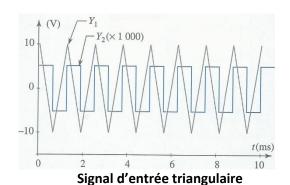

PSI* 2014 - 2015 TD N2 - ELECTRONIQUE (2)

Exercice N°1: Intérêt du montage suiveur

Déterminer la tension v_s le courant i_s dans chacun des montages représentés ci-dessous.

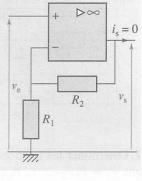



Ces résultats sont-ils modifiés si l'on change la résistance de charge ? Commenter.

Exercice N°2: Montage inverseur

On considère un montage amplificateur inverseur, de gain – 10, alimenté par un signal périodique sinusoïdal ou triangulaire de fréquence 800 Hz et d'amplitude 1V.

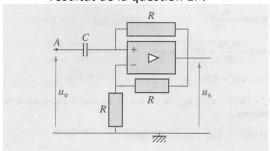
 Y_1 correspond à la sortie v_S du montage et Y_2 correspond à la borne inverseuse de l'ALI. Interpréter les signaux ci-dessous :



Exercice N°3: Limitation de la tension de sortie d'un montage non-inverseur

On considère le montage non inverseur suivant avec une sortie à vide.

L'amplificateur opérationnel a pour tensions de saturation $\pm V_{\rm sat}$ ($V_{\rm sat}$ = 15 V), pour courants de saturation $\pm I_{\rm sat}$ ($I_{\rm sat}$ = 20 mA) et pour vitesse de balayage :


$$(I_{\text{sat}} = 20 \text{ mA})$$
 et pour vitesse de balayage :
$$\sigma = \left| \frac{dv_{\text{s}}}{dt} \right|_{\text{max}} (\sigma = 0,5 \text{ V. } \mu\text{s}^{-1}).$$

- 1. Quelle condition doivent vérifier R_1 et R_2 pour que la saturation en tension apparaisse avant la saturation en courant ? On admettra, pour la suite, que cette condition est vérifiée.
- 2. Déterminer l'amplitude maximale $v_{\rm s_m}$ de $v_{\rm s}$, en régime linéaire, pour un signal d'entrée sinusoïdal de fréquence f. Quelles sont les valeurs de $v_{\rm s_m}$ pour $f=100~{\rm Hz}$, $1~000~{\rm Hz}$, $1~00~{\rm kHz}$ et $1~{\rm MHz}$?
- 3. Déterminer l'amplitude maximale de $v_{\rm s}$ (non nécessairement en régime linéaire) pour un signal d'entrée sinusoïdal de fréquence f. Valeurs pour f = 100 Hz, 1000 Hz, 100 kHz et 1 MHz.

Exercice N°4 : Stabilité

- 1. Déterminer la fonction de transfert du circuit représenté ci-dessous en supposant l'AO idéal en régime linéaire.
- 2. On relie la borne A à la masse ; étudier la stabilité de ce système. Que vaut u_s ? Que conclure du résultat de la question 1.?

Exercice N°5: Fonction de transfert d'un amplificateur inverseur

- Déterminer la fonction de transfert d'un amplificateur inverseur en prenant en compte le modèle passe-bas du premier ordre de l'ALI.
- 2. Déterminer le diagramme asymptotique et la fréquence de coupure à -3 dB; pour les AN on choisira des valeurs usuelles pour les différents paramètres et les différentes résistances.
- Etudier la stabilité du montage.

Exercice N°6: Filtre actif d'ordre 2

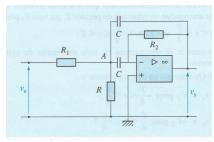
Le filtre ci-contre, appelé filtre de RAUSCH comprend un ALI supposé parfait et fonctionnant en régime linéaire

- 1. Que se passerait-il si on échangeait l'entrée inverseuse et l'entrée non inverseuse de l'amplificateur opérationnel?
- 2. La tension d'entrée est une fonction sinusoïdale du temps de pulsation ω_0 , à laquelle on associe la tension complexe notée $\underline{v}_{\rm e}$. De même à $v_{\rm s}$ on associera $\underline{v}_{\rm s}$. On définit T (transmittance complexe du montage) :

$$\underline{T} = \frac{\frac{v}{s}}{\frac{v}{e}}.$$

Montrer que T peut se mettre sous la forme :

$$\underline{T} = \frac{T_0}{1 + jQ\left(x - \frac{1}{x}\right)}$$


expression dans laquelle $j^2 = -1$. T_0 est une fonction réelle de R_1 et R_2 , Q est une fonction réelle de R, R_1 et R_2 et $x = \frac{\omega}{\omega_0}$ (ω_0 est une pulsation que l'on exprimera en fonction de R_1 , R_2 , R et C). On pourra poser :

$$R' = \frac{R_1 R}{R_1 + R}$$

et exprimer certains des résultats demandés à l'aide de R'.

3. On définit le gain du montage par $G = 20\log T$ (T est le module de \it{T} . Le logarithme est le logarithme décimal).

Tracer l'allure du diagramme donnant G en fonction de log(x) suivant la valeur de Q.

- **4.** a) Calculer T_0 , Q, ω_0 et $N_0 =$
- b) Définir et calculer la bande passante à -3 dB. On donnera les valeurs numériques des fréquences de coupure. $A.N.: C = 1 \text{ nF}, R = 10 \text{ k}\Omega, R_1 = 100 \text{ k}\Omega, R_2 = 1 \text{ M}\Omega.$
- 5. a) On considère maintenant que la tension d'entrée v_e est une tension en créneaux de période T, qui vaut V_0 pour $0 < t < \frac{T}{2}$ et $-V_0$ pour $\frac{T}{2} < t < T$.

Son développement en série de Fourier est donné par:

- $B_{2p} = 0,$ $B_{2p+1} = \frac{4V_0}{\pi} \frac{1}{2p+1}.$
- c) Compte tenu des valeurs numériques données au 4), quelle doit être $N = \frac{1}{T}$ la fréquence de v_e pour que N_0 (défini et calculé au 2)) corresponde à la fréquence de l'harmonique 3 de la décomposition du 5) a)? Quelles seront les amplitudes du fondamental et des harmoniques 2, 3, 4 et 5 à l'entrée et à la sortie du montage ? On fera les calculs littéraux et numériques de ces amplitudes, on prendra $V_0 = 0.5$ V. Conclure.